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SUMMARY

In this paper we study the dynamical properties of models for botanical epidemics, especially for
soil-borne fungal infection. The models develop several new concepts, involving dual sources of in-
fection, host and inoculum dynamics. Epidemics are modelled with respect to the infection status
of whole plants and plant organs (the G model) or to lesion density and size (the SW model). The
infection can originate in two sources, either from the initial inoculum (primary infection) or by
a direct transmission between plant tissue (secondary infection). The first term corresponds to the
transmission through the free-living stages of macroparasites or an external source of infection in
certain medical models, whereas the second term is equivalent to direct transmission between the
hosts in microparasitic infections. The models allow for dynamics of host growth and inoculum decay.
We show that the two models for root and lesion dynamics can be derived as special cases of a single
generic model. Analytical and numerical methods are used to analyse the behaviour of the models for
static, unlimited (exponential) and asymptotically limited host growth with and without secondary
infection, and with and without decay of initial inoculum. The models are shown to exhibit a range
of epidemic behaviour within single seasons that extends from simple monotonic increase with satu-
ration of the host population, through temporary plateaux as the system switches from primary to
secondary infection, to effective elimination of the pathogen by the host outgrowing the fungal infec-
tion. For certain conditions, the equilibrium values are shown to depend on initial conditions. These
results have important consequences for the control of plant disease. They can be applied beyond
soil-borne plant pathogens to mycorrhizal fungi and aerial pathogens while the principles of primary
and secondary infection with host and inoculum dynamics may be used to link classical models for
both microparasitic and macroparasitic infections.

1. INTRODUCTION

Modelling of animal diseases occupies a central role
in the theory and ecology of host–parasite and
predator–prey relationships (Anderson & May 1991).
Plant diseases have so far impinged relatively little
on the attention of ecological and epidemiological

modellers (Gilligan 1985; Campbell & Madden 1990;
Roughgarden et al. 1989). Yet the principles for epi-
demic spread within and between fields, problems of
scale in linking infection of an individual to popula-
tion behaviour and the amenability of plants to ex-
perimental analysis imply that botanical epidemiol-
ogy is both theoretically and experimentally suited to
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contribute to broader epidemiological analyses. This
is particularly true for soil-borne plant pathogens for
which there is currently much interest in biological
control (Cook & Baker 1983; Cook 1988; Gilligan
1994; Kleczkowski et al. 1996; Gubbins & Gilligan
1996, 1997) and in problems of spatial heterogeneity
(Gilligan 1995).

Soil-borne plant pathogens include fungi, nema-
todes, bacteria, viruses, mycoplasmas and ricketsia-
like organisms. Amongst these, fungi are collectively
and often individually the principal causes of crop
losses. Soil-borne parasitic fungi have two broad
types of infection cycle, primary infection from a
reservoir of inoculum in soil and secondary infection
from infected to uninfected hosts. Compared with
more general epidemiological systems, including an-
imal as well as plant hosts, secondary infection cor-
responds to transmission between susceptibles and
infectives, while primary infection is equivalent to in-
troductions from an external source. Within the soil,
the reservoir of inoculum is depleted by decay of in-
oculum due to senescence, parasitism and predation.
Inoculum is replenished by the decay and incorpora-
tion of infected plant tissue.

Selection of appropriate host, pathogen and dis-
ease variables for quantification, modelling and anal-
ysis of botanical epidemics depends on the character-
istics of the host pathogen system and on the scale
and dynamics of interest. Almost all fungal sym-
bionts of plants invade from a localized point of entry.
Certain fungi, such as the beneficial endomycorrhizal
fungus, Glomus mossae, and the common root and
stem pathogen, Rhizoctonia solani, frequently grow
to form an identifiable infection unit or lesion. Sub-
sequent infection leads to a population of lesions or
infection units. As the density of lesions increases
the proportion of diseased or infected root tissue in-
creases and the epidemic is limited by the availability
of susceptible tissue. A second class of fungi, typi-
fied by Gaeumannomyces graminis which causes the
take-all disease of cereals, produce infections and le-
sions that grow indeterminately so that they effec-
tively occupy an entire root. A third class arises with
highly pathogenic fungi which can girdle and kill an
entire root from a single lesion.

All three classes of symbiont behaviour, involv-
ing discrete, indeterminate or virulent infections, can
be modelled by one of two broad approaches. One
models the change in status of plants or of plant or-
gans from susceptible to diseased (Brassett & Gilli-
gan 1988). The other models the dynamics of lesions,
infections or points of entry, later referred to collec-
tively as lesions, and the relative changes in lengths of
diseased and susceptible root tissue (Smith & Walker
1981). Early models dealt with the disease status of
whole plants (Van der Plank 1963), but many plants
produce large numbers of roots so that classification
as diseased or undiseased, depending on the pres-
ence of a single lesion on an extensive root system, is
unsatisfactorily coarse. Considerable dynamical ac-
tivity and spatial heterogeneity is evident (Werker
& Gilligan 1990) even when most plants are infected
in an agricultural crop. For many plants, therefore,

especially monocotyledons, main root axes are an ap-
propriate unit of population (Gilligan 1985).

In practice, root-based models are most appropri-
ate for those epidemics where lesions occur singly on
roots, where lesions expand to occupy entire roots or
when a single lesion is sufficiently virulent to inca-
pacitate an entire root. The ratio of susceptible to
infected roots, rather than root tissue, is then an im-
portant determinant of epidemic development. Root-
based models are also appropriate in dealing with
experimental data where there is loss of root tissue
on recovery from soil but where roots can still be
classified as diseased or healthy. Lesion-based mod-
els are best suited to fungi that produce discrete le-
sions with limited, determinate growth, in which the
dynamics of fungal population growth is driven by
lesion density and proportion of infected or diseased
tissue. Lesion-based models may also be used, how-
ever, to examine the fine-scale dynamics of infection
and population growth of almost all root-infecting
fungi.

In this paper, we present and analyse two general
models for the temporal spread of plant infections;
one deals with roots as units, the other with lesions.
The models allow for dual sources of primary and
secondary infection, for inoculum decay and for host
growth. The models are motivated for soil-borne epi-
demics including ectotrophic pathogens, such as G.
graminis, damping-off fungi, R. solani and Pythium
ultimum and necrotrophic root rotting fungi includ-
ing Fusarium and Phytophthora spp. The foregoing
include some of the most economically important
pathogens in temperate and tropical agriculture. The
models can also be applied to non-pathogenic col-
onization by endomycorrhizae and ectomycorrhizae
and to aerial epidemics of plants and animals in
which there are two sources of infection, for exam-
ple, sheath blight of rice caused by R. solani.

The dynamical behaviour of the two types of model
is used to test practical questions about the influence
of host growth and inoculum decay on the dynamics
of infection and the equilibrium densities of infec-
tion and disease. We identify criteria for equilibrium
densities to distinguish between epidemics that sat-
urate the host population, with all roots and root
tissue becoming infected, from those in which there
is some lower limit to the carrying capacity. We show
that the amount of initial inoculum present in soil at
the beginning of a season can influence this carry-
ing capacity, thereby perpetuating patchiness in the
occurrence of disease. Particular attention is given
throughout to the relative importance of primary and
secondary infection. The rate of decay of soil-borne
inoculum is also shown to affect the switch from pri-
mary to secondary infection. We also examine how
the distribution of lesions can affect the dynamics of
an epidemic by comparing disease trajectories aris-
ing from relatively few large lesions with those that
derive from many small lesions.

The role of host growth in disease dynamics is
analysed by comparing unlimited, indeterminate root
growth with limited growth, in which there is a def-
inite carrying capacity, and static host populations
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where roots or stems rapidly grow through an in-
oculum layer and then remain exposed to infection.
Here we test whether the host can outgrow infection
or if the multiplicative effect of secondary infection
enables the epidemic to ‘keep up’ with host expan-
sion.

Although the models are introduced as separate
paradigms for root and lesion dynamics, we show
that the two models can be derived as special cases
of a single generic model that bridges the biologi-
cal properties of each model. Finally, the relation-
ships between the general plant models, SIR (Suscep-
tible, Infected and Removed) and micro- and macro-
parasite (Anderson & May 1979, 1991; May & An-
derson 1979) models are discussed.

2. GENERAL MODELS

Depending on the variable of interest, two general
models may be distinguished. Brassett & Gilligan
(1988), with elaborations by Gilligan (1990), pro-
posed a model for the change in density of infected
roots (Ni) in a population of roots (N). The simplest
version of the model, with fixed inoculum (P ) and
host densities, is a convolution of the monomolecu-
lar and logistic functions,

infected roots:
dNi

dt
= (rpP + rsNi)(N −Ni), (1)

in which rp is the rate of primary infection and rs is
the rate of secondary infection. Primary infection is
therefore driven by contacts between inoculum (P )
and uninfected, susceptible roots (N − Ni), while
secondary infection depends on contacts between in-
fected and susceptible individuals, familiar in many
epidemiological models.

Smith & Walker (1981) and later Walker & Smith
(1984) introduced a model to describe the dynamics
of lesions or single infections (U), hereafter referred
to as lesions, together with the length of infected root
(Li):

lesions:
dU
dt

= rpP (L− Li), (2)

infected root length:
dLi

dt
= rlU

(
1− Li

L

)
, (3)

in which L is the total root length, rp is the rate of
primary infection, defined in this case as the number
of lesions per unit time per unit of inoculum per unit
of susceptible tissue, and rl is the rate of growth of
lesions. Lesions are produced solely by contacts with
soil-borne inoculum (P ) with no secondary produc-
tion of new lesions from existing lesions. The rate
of growth of lesions along roots is restricted by the
availability of susceptible tissue (1−Li/L). The mod-
els of Smith & Walker (1981) and of Walker & Smith
(1984) were introduced to describe the spread of in-
fections of beneficial, endomycorrhizal fungi on roots
of clover plants but the model can also be applied to
pathogenic fungi as long as the effects of the fungi on
host growth are not explicitly included in the model.

A natural extension of the Smith & Walker model,
which we propose here, is to introduce secondary in-
fection as an additional source of lesions, thus,

lesions:
dU
dt

= (rpP + rsLi)(L− Li),

(4)

infected root length:
dLi

dt
= riU

(
1− Li

L

)
, (5)

in which rs is the rate of secondary infection. This im-
plies that infected tissue is potentially infectious but
otherwise the biological assumptions of the model are
identical to those for equations (2) and (2). Note that
the parameters, though denoted in the same way as
in equation (1), have different meaning and therefore
different values. The principal variables and param-
eters used in the models are summarized in table 1.

(a) Incorporation of host and inoculum dynamics

Following Gilligan (1985, 1990) we introduce dy-
namics for inoculum and host growth, giving, for the
root model,

infected roots:
dNi

dt
= (rpP + rsNi)(N −Ni), (6)

total roots:
dN
dt

= rnf(N), (7)

inoculum:
dP
dt

= −rdP, (8)

in which rn is the rate of root production, rd is the
rate of decay of inoculum and f(N) is a general term
that incorporates exponential [f(N) = N ] and logis-
tic [f(N) = N(1−N/Nmax)] growth.

For the lesion model, the equations become

lesions:
dU
dt

= (rpP + rsNi)(N −Ni),

(9)

infected root length:
dLi

dt
= rlU

(
1− Li

L

)
, (10)

total root length:
dL
dt

= rnf(L), (11)

inoculum:
dP
dt

= −rdP, (12)

in which rn, rd and f(L) are analogously defined as
for the root model above, except that host growth
now refers to growth in length rather than in num-
ber of roots. We choose an exponential decay of in-
oculum with constant per capita mortality rate in
equations (6) and (9) for simplicity and because it
has been shown to apply to many pathogens (Garrett
1970). The rate of host growth is influenced only by
the total number of roots (equation (6)) or the total
amount of root tissue (equation (9)) without sepa-
ration of the effects of infection and disease on host
growth. We discuss, later, how to incorporate func-
tional responses that allow for the effects of infection
on root growth.
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Table 1. Variables, parameters and functions used in the
models.

unitsa︷ ︸︸ ︷
symbol description G model SW model

variables

Ni infected roots numbers —
N total roots numbers —
P propagules numbers numbers
U lesions — numbers
Li infected root — cm

length
L total root — cm

length

parameters

Nmax maximal root numbers —
number

Lmax maximal root — cm
length

rp primary day−1 (day cm)−1

infection rate
rs secondary day−1 (day cm2)−1

infection rate
rl lesion growth — cm s−1

rn host growthb day−1 day−1

rd inoculum day−1 day−1

death
g infection day−1 day−1

induced death
η germination 1 1

effect on
inoculum

ρ inoculum 1 cm−1

release

functions

f functional numbers cm
response

aWe assume that all variables are measured in absolute
values. Often, however, they are expressed in terms of
spatial densities (i.e. numbers or lengths per cm2) or vol-
ume densities (per cm3). The units will then change ac-
cordingly.
bUnits of rn depend on the particular choice of f . Here
we assume that rn expresses the per capita growth rate.

The models in equations (6)–(6) and (9)–(9) are
hereafter referred to as the G and SW models, re-
spectively. The G and SW models with primary
and secondary infection are presented here as two
paradigms, that differ not only in biological variables
but also in mathematical behaviour. We show in Ap-
pendix 1 that each can be derived, under certain as-
sumptions, as special cases of a single generic model.

(b) Non-dimensionalization

It is convenient to introduce dimensionless vari-
ables to scale disease relative to the changing host
size. Let n = Ni/N be the proportion of infected

roots for the G model, then

dn
dt

= (rpP + ρs(t)n)(1− n)−G(t)n, (13)

where

ρs(t) = rsN and G(t) =
1
N

dN
dt

= rn
f(N)
N

.

For the SW model, let u = U/L be the average num-
ber of lesions per unit length of root and l = Li/L
be the proportion of root length infected, then

du
dt

= (rpP + ρs(t)l)(1− l)−G(t)u, (14)

dl
dt

= rlu(1− l)−G(t)l, (15)

in which

ρs(t) = rsL and G(t) =
1
L

dL
dt

= rn
f(L)
L

.

In the following analyses, we consider three special
cases (expressions for ρs are given on the left for the
G and right for the SW models).

(i) No host growth:

G(t) = 0,
ρs(t) = rsN = const., ρs(t) = rsL = const.

(ii) Limited host growth:

G(t)→ 0 as t→∞,
ρs(t)→ rsNmax, ρs(t)→ rsLmax.

(iii) Unlimited (exponential) growth:

G(t) = rn,

ρs(t) = rsN0 exp(rnt) ρs(t) = rsL0 exp(rnt)
→∞ as t→∞, →∞ as t→∞.

Populations with no host growth include stems or
roots that rapidly grow through an inoculum layer
and then remain exposed to infection. Limited host
growth represents many plants with a fixed carrying
capacity as, for example, main root axes of wheat,
while unlimited growth characterizes the early stages
of extensive proliferation of lateral roots of many
other grasses. An example of limited growth is given
by the logistic function, for which

ρs(t) =
rsNmax

1 + J exp(−rnt)
, G(t) =

rnJ exp(−rnt)
1 + J exp(−rnt)

,

where J = (Nmax/N0 − 1).

3. EQUILIBRIUM AND DYNAMICAL
BEHAVIOUR

We consider the influence of three dynamical fac-
tors, inoculum survival, host growth and secondary
infection, on disease trajectories and equilibrium be-
haviour of epidemics that are initiated by primary
infection from a reservoir of inoculum. The survival
of primary inoculum is treated simply as an expo-
nential decay that is switched on or off by adjusting
rd. Host growth is treated as being effectively static,
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Figure 1. Typical disease progress curves generated by the G model with no secondary infections. The main figures
show n = Ni/N as a function of t, whereas the inserts present the absolute numbers of infected roots Ni for the first
20 (arbitrary) time units. Figures are arranged so that rd changes between columns: (a) and (c) rd = 0; (b) and (d)
rd = 0.9, and rn changes between rows: (a) and (b) rn = 0.0; (c) and (d) rn = 0.1. Other parameters: rp = 0.1,
P (0) = 1, N(0) = 1. Initial conditions: n(0) = 0, 0.1 and 0.6.

limited or unlimited, relative to disease dynamics as
described above. There is no explicit feedback be-
tween disease or infection and host growth (i.e. the
functions in f depend only on total host tissue and
not diseased tissue). Secondary infection is switched
off by setting rs = 0.

Analytical solutions were obtained for certain con-
ditions. These are classified in tables 6 and 7, and
are given in Appendix 2. Wherever possible, the dy-
namical behaviour of the models was examined using
these solutions; otherwise, the equations were solved
numerically using facsimile (Anon. 1995).

(a) G model

The equilibrium densities of the proportion of in-
fected roots (n) are summarized in table 2. Secondary
infections are very important: the host can outgrow
the infection if rs = 0 but cannot if rs 6= 0. If
inoculum decays and there are no secondary infec-
tions, the equilibrium state depends on the initial
conditions of inoculum and the proportion of infected
roots (table 2). Since the correlation between initial

and equilibrium density is positive, it follows that
the dependence on initial conditions may perpetuate
patchiness of disease and inoculum in the fields. Thus
lower densities of initial inoculum result in less dis-
ease which, in turn, produces less inoculum for the
next season, while regions of higher initial inoculum
give rise to more disease which, in turn, maintains a
high level of inoculum.

(i) No secondary infection

In the absence of host growth, secondary infection
and decay of inoculum, the epidemic saturates the
host population (figure 1a). The approach to equi-
librium is monomolecular (monotonically increasing
without inflection, see table 6, Appendix 2). When
there is decay of inoculum, the equilibrium levels of
infection depend on initial conditions (figure 1b, ta-
ble 2). Host growth, in the form of exponential in-
crease, suppresses the relative levels of infection, al-
though absolute levels increase because there is no
death or removal of infectious tissue. The dynamical
pattern of the disease progress curves is preserved
when there is no decay of inoculum (cf. figures 1a,c).
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Figure 2. Typical disease progress curves generated by the G model with secondary infections, rs = 0.1. The main
figures show n = Ni/N as a function of t, whereas the inserts present the absolute numbers of infected roots Ni for
the first 20 (arbitrary) time units. Figures are arranged so that rd changes between columns: (a) and (c) rd = 0; (b)
and (d) rd = 0.9, and rn changes between rows: (a) and (b) rn = 0.0; (c) and (d) rn = 0.1. Other parameters: rp = 0.1,
P (0) = 1, N(0) = 1. Initial conditions: n(0) = 0, 0.1 and 0.6.

In this case, the relative level of infection at equilib-
rium (rpP/(rpP + rn)) is less than one and depends
on the initial amount of primary inoculum, P , (ta-
ble 2 and figure 1c). When, however, inoculum de-
cays, disease equilibria are zero, so the host is able
to outgrow infection, since further spread of infec-
tion ceases after the initial inoculum is exhausted
(figure 1d, table 2).

(ii) Secondary infection

When secondary infections occur, all roots become
infected (figure 2 and table 2). Decay of inoculum and
the relative growth of the host combine to affect the
dynamics of infection (cf. figures 2c,d). In particu-
lar, after an initial period of increase (driven by pri-
mary infection), the proportional amount of infection
slows down. The deceleration is caused by decay of
inoculum, which reduces the rate of primary infection
before secondary infection begins to build up. Rapid
growth of the host (figure 2d) may dilute the amount
of infection so much that the relative amount of infec-
tion declines. This is shown more clearly in figure 3
in which several disease trajectories for the same ini-

tial condition (Ni = 0) are shown for different rates
of secondary infection.

In the absence of secondary infection and without
decay of inoculum (figures 1a,b and lowest curves
(rs = 0) in figures 3a,b), disease trajectories are
monomolecular. Allowance for secondary infection
introduces a point of inflection to the curves (fig-
ures 3a,b). Note that without decay of inoculum but
with growth of the host, there will be one point of
inflection, or two if separated by a maximum, as long
as rs > rn + rpP +

√
(4rsrpP ). The stimulatory ef-

fect of secondary infection may be delayed by rapid
growth of the host (figure 3d).

(b) SW model

The proportion of infected root length reaches sat-
uration (l∞ = 1) for the SW model in most cases (ta-
ble 3). Two exceptions occur depending on whether
or not inoculum decays when there is no secondary
infection and the host grows exponentially (table 3).
Thus when inoculum decays, primary infection is re-
duced and the host outgrows the epidemic (l∞ = 0).
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Figure 3. Sensitivity of shapes of the disease progress curves for the G model to the changes in secondary infections.
rd changes between columns: (a) and (c) rd = 0; (b) and (d) rd = 0.9, and rn changes between rows: (a) and (b)
rn = 0.0; (c) and (d) rn = 0.1. Different curves correspond to different values of rs = 0, 0.05, 0.1, 0.15 and 0.2, with
initial conditions fixed (Ni(0) = 0). Other parameters: rp = 0.1, P (0) = 1, N(0) = 1, except in (a) where rp = 0.02
for the sake of clarity. Note that the curves for rs = 0 are comparable to figure 1.

If inoculum does not decay, the host does not com-
pletely outgrow the epidemic and the proportion of
infected root is given by

l∞ =

√
4rlrpP + r2

n − rn√
4rlrpP + r2

n + rn
.

The density of lesions (number of lesions per unit
length) exhibits three types of equilibrium behaviour,
depending on the growth dynamics of the host (ta-
ble 3). When there is no host growth, u∞ depends
on initial conditions (u(0), l(0)). For limited host
growth, u will approach some finite value, so that no
further lesions are produced. When the host grows
exponentially and secondary infection occurs, lesions
continue to arise on the newly expanded host tis-
sue and therefore u grows exponentially (table 3).
Without secondary infections, the density of lesions
is either finite or zero depending on the dynamics of
inoculum.

Disease trajectories for the SW model are conve-
niently considered as phase portraits for l versus u, to
show concomitant changes in these variables. Trajec-
tories are shown in figure 4 (no secondary infection)

and figure 5 (secondary infection) for four sets of ini-
tial conditions corresponding to no infection (u = 0,
l = 0), few large lesions (0.01, 0.5), many small le-
sions (0.5, 0.01) and many large lesions (0.5, 0.5).

(i) No secondary infection

When there is no host growth and no secondary
infection, inoculum decay does not affect the quali-
tative dynamics of disease (figures 4a,b). The trajec-
tories settle on equilibria determined by the initial
conditions. With the host growing exponentially (fig-
ures 4c,d), the trajectories look initially similar to the
case with a static host, at least for small initial loads
of infection. With constant inoculum density, the ab-
solute levels of infected root (Li) and lesions (U) re-
flect the exponential growth of the host (see insert
in figure 4c). When inoculum decays, Li increases
more slowly than L and U levels off (see insert in fig-
ure 4d). The asymptotic level of U depends on initial
conditions. It follows that since u = U/L, then the
trajectories for the relative loads of infection (l) and
lesions (u) collapse on the single equilibrium (zero
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Table 3. Equilbrium values for the SW model
(First formula in each column corresponds to l∞, second to u∞. The results are independent of the particular form
of inoculum decay, apart from case (d) below which assumes an exponential decay with the rate rd. For limited
growth there are no analytical predictions for equilibrium values. Numerical evidence suggests the dependence on
initial conditions in this case.)

host growth rs = 0 rs 6= 0

no inoculum dynamics

zero 1,

√
4rpP (1− l(0)) + rlu

2(0)
2rl

a

1,
√
rlrsLu(0)2 + (rpP + rsL)2 − (rpP + rsLl(0))2

×(rlrsL)−1/2 b

limited 1,
√
rpP/rl 1,

√
(rpP + rsL∞)/rl

exponential

√
4rlrpP + r2

n − rn√
4rlrpP + r2

n + rn
,

√
4rlrpP + r2

n − rn

2rl
1, ∞ c

inoculum decays to 0

zero 1, (1/rl)[
√

2rlrpP (0)(1− l(0)) + (rlu(0) + rd)2 − rd] d 1, depends on initial conditions

limited no analytical results

exponential 0, 0 1, ∞ c

Particular results for u(0)→ 0 and l(0)→ 0:
a u∞ =

√
(2rpP/rl).

b u∞ =
√

((rsL+ 2rpP )/rl).
c u∞ ∼ l∞/(1− l∞) and approaches ∞ with l(t) approaching 1.
d u∞ = (

√
(2rlrpP (0) + r2

d)− rd)/rl.

Table 2. Equilibrium values for the G model. The table
shows the values of n = Ni/N

(The results are independent of the particular form of
inoculum decay, apart from case (a) below which assumes
an exponential decay with the rate rd.)

host growth rs = 0 rs 6= 0

no inoculum dynamics

zero or limited 1 1

exponential rpP/(rpP + rn) 1

inoculum decays to 0

zero or limited 1− (1− n(0))
× exp(−rpP (0)/rd)a 1

exponential 0 1

aIn particular, if n(0) = 0, then

n∞ = 1− exp(−rpP (0)/rd).

for the decaying inoculum) instead of going towards
the line of l∞ = 1 (cf. figures 4c,d with figures 4a,b).

(ii) Secondary infection

When there is no host growth but secondary infec-
tion occurs, the dynamics are essentially similar to
those without secondary infections (cf. figures 5a,b
with figures 4a,b).

The combined effects of secondary infection and
exponential host growth lead to quite different be-
haviour from the case with no secondary infection
(cf. figures 5c,d with figures 4c,d). The effect of host
growth becomes apparent in the later stages of the
epidemic when the trajectories converge and then fol-
low a common unbounded trajectory (figures 5c,d).
The underlying dynamics are determined by a faster
rate of increase in the absolute number of lesions (U)
relative to the total amount of host tissue (L).

When the host growth is limited by logistic growth,
here with L∞ = 3, the dynamics become more com-
plicated. The infection fills all the available tissue
even when inoculum decays (cf. figures 6a,b, where
l∞ → 1, with figures 4c,d, where l∞ < 1). The dy-
namical behaviour for logistic growth is initially sim-
ilar to the case for exponential growth but as the host
growth slows down, infection prevails and draws the
trajectories towards the line l∞ = 1. Note that small
differences in the values for u∞ for different initial
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Figure 4. Phase portraits for the SW model with no secondary infection, but with inoculum decay and exponential
host growth. Main figures show l(t) as a function of u(t), whereas the inserts present the absolute numbers of lesions
U(t) as a function of t for the first 20 (arbitrary) time units. Dots indicate the starting points and stars the equilibria.
Figures are arranged so that rd changes between columns: (a) and (c) rd = 0; (b) and (d) rd = 0.5, and rn changes
between rows: (a) and (b) rn = 0.0; (c) and (d) rn = 0.1. Other parameters: rp = 0.1, P (0) = 1, rl = 0.5, L(0) = 1.
Initial conditions (u, l) = (0, 0), (0.01, 0.5), (0.5, 0.01) and (0.5, 0.5).

conditions in figures 6a,c,d can be attributed to the
numerical round-off error. Further numerical investi-
gation suggests that the different equilibrium values
for u in figure 6b are real but there is no analytical
proof for this.

4. DISCUSSION

We have developed and analysed two models that
encapsulate the basic dynamics and commonly mea-
sured disease variables of epidemics of soil-borne
plant pathogens. The models incorporate primary
and secondary infection, inoculum and host dynam-
ics. The G model describes the change in disease sta-
tus of host organs, typically roots, during an epi-
demic. The SW model describes the change in den-
sity of lesions or infections and the length of dis-
eased or infected tissue. The G model can be simply
adjusted to model the status of individual plants.
The models are presented for pathological infection
but, given the absence of a functional response for
the effects of disease on host growth, the results pre-

sented here apply also to beneficial colonization by
vesicular-arbuscular mycorrhizae, as originally dis-
cussed by Smith & Walker (1981), Walker & Smith
(1984), as well as Buwalda et al. (1982). We shall
discuss elsewhere the introduction of functional re-
sponses into the models.

The models have been used to address specific bi-
ological questions about the role of primary and sec-
ondary infection, host growth and inoculum decay
on the dynamics of infection. Although the models
represent simplified systems, the existence of analyt-
ical solutions for certain situations of host growth,
inoculum decay and secondary infection provide in-
sight into some of the possible dynamics that may
be expected and tested in the field. Whereas plants
may outgrow epidemics, especially when the source
of inoculum in soil decays, secondary infection can
prevent this, resulting in saturation with infection
and disease. Although primary and secondary infec-
tion occur simultaneously during at least part of an
epidemic, the change from a phase of predominantly
primary infection to secondary infection may lead to
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Figure 5. Phase portraits for the SW model with secondary infection, rs = 0.1, with inoculum decay and exponential
host growth. Main figures show l(t) as a function of u(t), whereas the inserts present the absolute numbers of lesions
U(t) as a function of t for the first 20 (arbitrary) time units. Dots indicate the starting points and stars the equilibria.
Figures are arranged so that rd changes between columns: (a) and (c) rd = 0; (b) and (d) rd = 0.5, and rn changes
between rows: (a) and (b) rn = 0.0; (c) and (d) rn = 0.1. Other parameters: rp = 0.1, P (0) = 1, rl = 0.5, L(0) = 1.
Initial conditions (u, l) = (0, 0), (0.01, 0.5), (0.5, 0.01) and (0.5, 0.5).

a marked change in epidemic rates. This may take
the form of a marked acceleration as the multiplica-
tive effect of secondary infection occurs (figure 3d for
the G model). It can also, in certain circumstances,
lead to a temporary or even persistent plateau in the
period during which most primary infection is com-
pleted as the reservoir of soil inoculum decays to zero
and a delay occurs before secondary infection accel-
erates (figure 7).

The sensitivity of the systems to initial conditions
(tables 2 and 3, figures 1c, 4a,b, 5b) may have impor-
tant consequences for the occurrence and persistence
of disease patches in fields. Thus small differences in
the amounts of initial inoculum or of infected tissue
in transplanted seedlings could become amplified by
the inherent nonlinear dynamics leading to patches
with markedly different levels of disease in the same
field.

Several other models have been proposed for the
dynamics of plant parasitic fungi. Most of these are
elaborations of logistic formulations with allowance
for host growth. They deal with either primary or

secondary infection. They are discussed in Gilligan
(1990). We note that Jeger (1987) also proposed a
model for primary infection that linked lesion growth
and lesion length. The model is given, after some
reparameterization, by

infected
root length:

dLi

dt
= (ri + rpP )(L− Li), (16)

total root length:
dL
dt

= rn(L− Li), (17)

inoculum:
dP
dt

= −rdP. (18)

In practice, this model exhibits some of the math-
ematics of the G model and the biology of the SW
model. Because we wish to keep the mathematical
and biological paradigms expressed in equations (6)–
(6) and (9)–(9) separate, we do not discuss the Jeger
model in detail here. We show in Appendix 1, how-
ever, that the model can be derived as a special case
of the generic model that encompasses the G and SW
models.
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Figure 6. The solution of the SW model for the logistic host growth with the rate rn = 0.1 and the carrying capacity
Lmax = 3. Figures (a) and (b) should be compared with figure 4c,d, and figures (c) and (d) with figure 5c,d. rd changes
between columns: (a) and (c) rd = 0; (b) and (d) rd = 0.5. Other parameters: rp = 0.1, P (0) = 1, rl = 0.5, L(0) = 1.
Initial conditions (u, l) = (0, 0), (0.01, 0.5), (0.5, 0.01) and (0.5, 0.5).

The G and SW models presented in equations (6)–
(6) and (9)–(9) can be broadly separated into
the paradigms of microparasitic and macroparasitic
models proposed by Anderson & May (1979) and
May & Anderson (1979) for medical and animal epi-
demics. There are, however, important differences
that are dictated by the life cycles of plant para-
sitic fungi and by the nature of the disease and host
variables that can be measured.

Microparasites, which are typified by viruses, bac-
teria and protozoa amongst animal parasites are
characterized by small size with short generation
times and extremely high rates of direct reproduc-
tion in the host. Infection is usually passed from
host to host by direct (binary) contact. The dura-
tion of infection is short compared with the lifespan
of the host and the development of immunity to-
wards repeated infection is common. Typically, the
population of hosts (N) is classified into presence or
absence of infection. Infected individuals enter a re-
moved class if they become immune or die. The sys-
tem is modelled by transfer of individuals between
three classes (SIR) representing susceptibles (S), in-
fecteds (I) and removals (R), where N = S + I +R,

thus
dS
dt

= bN − dS − βSI, (19)

dI
dt

= βSI − (d+ α+ ν)I, (20)

dR
dt

= νI − dR, (21)

in which b is a source of susceptibles, d is the per
capita death rate of individuals, α is the enhanced
per capita death rate due to infection, β is the trans-
mission rate of infection between infected and suscep-
tible individuals (which may in certain circumstances
depend on N (Heesterbeek & Roberts 1995)) and ν
is the rate of recovery.

Macroparasites are larger parasites. They are typ-
ified by parasitic helminths. They have longer gen-
eration times than macroparasites. Direct multipli-
cation within the host is slow or absent. The in-
fection (inoculum) usually comes from an external
source involving free-living stages or secondary hosts
with their own dynamics. Immune responses gener-
ally depend on the number of parasites in the host
and persist for only a short time. The susceptible
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Figure 7. The solution of the G model with secondary
infections (rs = 0.05, solid line), exponential host growth
(rn = 0.1) and exponential inoculum decay (rd = 0.9)
displaying the plateau effect discussed in the text. The
solution for rs = 0 is also shown (broken line). Other
parameters identical to those in figure 3d.

class can again be distinguished among hosts, but
the load of infection (i.e. the number of parasites per
host) is an important factor in determining the rates
of pathogenicity, resistance and removal; thus typical
variables describe the number of hosts (N), parasites
in the hosts (X) and their free-living stages (w):

dN
dt

= (a− d)N − αX, (22)

dX
dt

= βwN − (µ+ d+ α)X − F (X,N), (23)

dw
dt

= λX − cw − βwN, (24)

in which b, d are per capita birth and death rates for
hosts, λ and c are the per capita birth and death rates
for free-living parasites, α is the per capita infection-
induced death rate, β is the transmission parameter
between free-living parasite and hosts, µ is the nat-
ural parasite death rate and F (X,N) represents a
correction for uneven distribution of macroparasites
amongst hosts (May & Anderson 1979).

The G model can be considered as a generaliza-
tion of the standard microparasitic SIR model by
including an external source of infection (inoculum).
Roots are classified as infected (Ni ≡ I) or suscepti-
ble (N − Ni ≡ S). Thus the mass action term in a
classical SIR model (βSI) is replaced by a term in
βS(I+P ), where P represents the external source of
inoculum. This type of SIR model, but with constant
and small P , has recently been discussed by Engbert
& Drepper (1994) in the context of seasonally driven
epidemics. The external source of inoculum is anal-
ogous to the free-living stages of the macroparasitic

models. Though we have not allowed for recovery or
death of roots in the present models, the introduc-
tion of a removed class can be incorporated into the
G model. We discuss elsewhere the use of SIR mod-
els for epidemics of soil-borne pathogens where the
force of infection decays as the host population be-
comes resistant to infection (Gilligan et al. 1997).

The SW model is allied to the macroparasitic
model, with free-living stages (inoculum) together
with measures of host availability and parasite load.
However, for the SW model, host availability is rep-
resented by the total amount of host tissue rather
than a density of discrete hosts. Parasite load is com-
prised not of density of parasites but two variables,
one for lesion density (U) and the other (Li) for the
proportion of infected tissue. The secondary infection
term (representing within host multiplication and/or
direct transmission) is absent in the macroparasitic
models but important for plant systems.

The relationships between variables discussed in
this paper and those of equations (19)–(19) and (22)–
(22) for microparasitic and macroparasitic models
are summarized in tables 4 and 5 from which the
hybrid nature of the models can be seen. We con-
clude that, while it is encouraging to adapt the
microparasitic–macroparasitic classification, the dif-
ferences in the fungal systems introduced here are
important since they represent not only the dynam-
ics but also the types of data that can be collected
for epidemiological analysis.

Further elaboration of the G and SW models is
possible to incorporate functional responses that al-
low for the effects of infection on root growth (see
Gilligan et al. 1997), so that the functions f from
equations (6)–(6) and (9)–(9) depend not only on N
or L (i.e. total root number or root length) but also
on the infected portions, Ni and Li, respectively. In
addition, we can also include a term describing death
of infected roots. In the case of the G model this re-
sults simply in addition of −gNi to equations (6),
(6) for infected and total roots; g defines infection
induced death. For the SW model, if a root dies the
number of lesions, the length of infected tissue and
the total length of tissue are all reduced (cf. equa-
tions (28)–(28) below with equations (9)–(9)). The
functional responses can be further adjusted to allow
for clumping in the manner suggested by Anderson
& May (1979).

The dynamics of inoculum in both the models can
be elaborated to allow for: (i) a Gaussian or other
decay function; (ii) exhaustion of inoculum by ger-
mination and infection; and (iii) release of inoculum
from dying roots. The models then become (ignoring
clumping and assuming exponential decay of inocu-
lum)

dNi

dt
= (rpP + rsNi)(N −Ni)− gNi, (25)

dN
dt

= rnf(N,Ni), (26)

dP
dt

= −rdP − ηrpP (N −Ni) + ρgNi, (27)
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Table 4. The variables and parameters for the G model (presented in equations (6)–(6)) compared with the microparasitic
model (equations (19)–(19))

G microparasite comments

N N

Ni I

N −Ni S or S +R, with R class frequently absent in plants
P — no direct equivalence in simple microparasitic models

(unless expressed as an external source of infection); dynamical variable for plants
rn b− d —

f(N) — no direct equivalence in simple microparasitic models
— α+ d no direct equivalence in G model but could be incorporated as effect of infected roots

on production of new roots, cf. g in equations (25)–(25)
rs β —
rd — no direct equivalence in simple microparasitic models

Table 5. The variables (and parameters for the SW model (equations (9)–(9)) compared with the macroparasitic model
(equations (22)–(22))

SW macroparasite comments

L N —
Li — no direct equivalence in simple macroparasitic models but can be given an

‘immunological’ interpretation, cf. equation (32)
U X —
P w —
rn a− d —
f(L) no direct equivalence in simple macroparasitic models
— α+ d+ µ no direct equivalence in SW model but could be incorporated as effect of infected

roots on production of new roots, cf. g in equations (28)–(28)
— F (X,N) clustering of lesions on dying roots is not considered here

rp(1− εU) β (1− εU) can be given an ‘immunological’ interpretation, cf. equation (32) in text
rs — no direct equivalence (within-host multiplication or direct contacts)
— λ no direct equivalence in SW model but could be incorporated as release of

inoculum from dying roots, cf. ρg in equation (28)
rd c —
rl — no direct equivalence in simple macroparasitic models (but can be given an

interpretation of the immunological response)

and
dU
dt

= (rpP + rsLi)(L− Li)− gU, (28)

dLi

dt
= rlU

(
1− Li

L

)
− gLi, (29)

dL
dt

= rnf(L,Li)− gLi, (30)

dP
dt

= −rdP − ηrpP (L− Li) + ρgLi, (31)

in which η is the per capita reduction of inoculum
due to germination and ρ measures inoculum release
from infected tissue. We show elsewhere how to elab-
orate the transmission parameters rp and rs in order
to analyse small scale effects within the pathozone or
rhizosphere on the large scale development of an epi-
demic (Kleczkowski & Gilligan, unpublished work).

Immunity to fungal infection of plants does not

play a significant role in infection. The formalism
developed by Anderson & May (1991) for the im-
munological responses of a host to macroparasites
can, however, be used to describe how the proba-
bility of lesion production depends on the length of
uninfected portions of the root. In the absence of sec-
ondary infection, equation (9) for U can be rewritten
as

dU
dt

= rpPL(1− Li/L) = rpPL(1− εU), (32)

where the term 1 − εU can be interpreted as an
increase in the ‘immunity’ of a root to further in-
fection due to the current status of infection, and
ε = Li/LU . This is a special case of the general for-
mula

1− ε
∫ a

0
U(a, t) exp(σ(a− a′)) da′,
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introduced in Anderson & May (1991) to describe ac-
quired immunity against macroparasitic infections,
with σ regulating the length of memory and a the
age of the host. This, however, leads towards an age-
structure model of root infection and exceeds the
scope of this paper.

The models presented in this paper continue and
extend earlier work on the analysis of botanical epi-
demics and the spread of root infection (Smith &
Walker 1981; Walker & Smith 1984; Gilligan 1985,
1990, 1994; Jeger 1987). The models also form a basis
for elaborations incorporating spatial heterogeneity,
functional responses for the effects of pathogens on
host growth and for scaling from the behaviour of in-
dividual propagules to mean field behaviour. Linking
of the dynamics of primary infection, which is analo-
gous to an external source of infection in SIR mod-
els or to free-living stages in macroparasitic models,
and of secondary infection, is likely to find important
applications in animal as well as botanical epidemi-
ology.

This work was funded by a grant from the Biotechnol-
ogy and Biological Sciences Research Council, which we
gratefully acknowledge.

APPENDIX 1. GENERAL MODEL

In this appendix we present a general model for
the spread of soil-borne pathogens and show how
the G and SW models can be obtained as special
cases. For brevity, we use the term lesion to include
regions of continuous disease (lesion sensu stricto)
and regions of continuous infection (infection units,
sensu (Cox & Sanders 1974)). We also show that the
general model includes a model for monomolecular
primary infection proposed by Jeger (1987).

(a) General model

(i) Formation of new lesions

. We follow the convention of the SW model and
consider first a single root (or a single organ of a
plant). Assume that the rate at which new lesions
are formed is proportional to the length of uninfected
portions of the root L − Li multiplied by a force of
infection λ:

dU
dt

= λ(L− Li), (33)

where λ is a sum of two sources of infection, rpP
(primary infection, caused by initial inoculum) and
rsLi (secondary, caused by the infected tissue):

λ = rpP + rsLi. (34)

If individual lesions rather than the whole tissue form
a source of secondary inoculum, the last term should
be replaced by rsU .

(ii) Lesion growth

Let c be the average size of a lesion, then

c =
Li

U
,

Li = Uc,

dLi

dt
= c

dU
dt

+ U
dc
dt
. (35)

(iii) Multiroot system

Equations (33)–(35) can be used to describe infec-
tion dynamics in a multiroot system. Denoting by a
superscript (j) a jth root, we obtain

dU (j)

dt
= (rpP + rs

∑
k

L
(k)
i )(L̂− L(j)

i ), (36)

dL(j)
i

dt
=
L

(j)
i

U (j)

dU (j)

dt
+ U (j) dc(j)

dt
, (37)

where L̂ is an average length of each root and c(j) is
an average lesion size in the jth root. The summa-
tion with respect to k = 1, 2, . . . in (36) includes the
same root, because we can have secondary infections
between different segments of the same root.

(b) Special cases

(i) SW model

The SW model does not distinguish between dif-
ferent roots, but rather describes the infection in
terms of tissue length Li =

∑
L

(j)
i . The indices in

(36) can be omitted and L̂ can be assumed to be
equal to the total length (or density) of the roots.
Additionally, the model assumes the following.

(1) c follows a monomolecular equation, with the
carrying capacity determined by an average inter-
lesion distance, i.e. cmax = L/U ,

dc/dt = rl(1− (c/cmax)). (38)

(2) The relative rate of growth of lesions is faster
than the rate at which new lesions are produced, thus

1
U

dU
dt
� 1

c

dc
dt
.

This leads to the SW model
dU
dt

= (rpP + rsLi)(L− Li), (39)

dLi

dt
= rlU

(
1− Li

L

)
. (40)

(ii) G model

The G model can be obtained from equations (36)
and (36) by assuming that the lesions grow very
fast so that any root is either uninfected (U (j) = 0,
L

(j)
i = 0) or infected (U (j) = 1, L(j)

i = L̂). Then∑
j

U (j)L
(j)
i =

∑
k

L
(k)
i ,

dU
dt

= (rpP + rsLi)(L− Li),

dNi

dt
= (rpP + rsNi)(N −Ni),

where L = NL̂,
∑
j U

(j) = U ≡ Ni and
∑
j L

(j)
i =

Li = NiL̂.
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(iii) Jeger model

A model proposed by Jeger (1987) can be obtained
from equations (33) and (35) but with a different
form of the monomolecular growth equation for the
average lesion size c, cf. (38),

dc
dt

= rl(cmax − c), (41)

where cmax = L/U is a maximal colony size. Then

dc
dt

= rl

(
L

U
− c
)
,

dLi

dt
= c

dU
dt

+ rl (L− Li) =
Li

U

dU
dt

+ rl (L− Li) .

Substituting the value for dU/dt we arrive at the
formula,

dLi

dt
=
(
rl +

rsL
2
i

U
+
rpP

U
Li

)
(L− Li)

(generalizing the results of Jeger (1987)). Jeger
(1987) further simplifies the equation by assuming
that the rate at which new lesions are formed de-
creases with lesion size, thus rp = kc0/c = kc0U/Li
(c0 can be interpreted as a ‘minimal’ lesion size and
k is an ‘effective’ infection rate). Making a similar
assumption about rs (rs = k′c0/c with another pa-
rameter k′), we obtain

dLi

dt
= (rl + k′c0Li + kc0P ) (L− Li), (42)

where rs = k′c0/c = k′c0U/Li. Note that the equa-
tion does not contain U .

APPENDIX 2. ANALYTICAL SOLUTIONS

This appendix lists analytical solutions and some
general types of behaviour of the solutions of the G
and SW models. The principal results are summa-
rized in tables 6 and 7.

(a) G model

General types of the solutions summarized in ta-
ble 6 are given below for the G model. For the nota-
tion, refer to table 6.

(i) G.1

No host growth, no inoculum decay, no secondary
infection:

Ni(t) = Ni(0) exp(−rpPt) +N(1− exp(−rpPt)).

(ii) G.2

The case for no host growth, no inoculum decay,
with secondary infection is shown in equation (43)
(for the notation, see table 6).

n = y − χ
=

ν(χ+ n(0))
(χ+ n(0))(1− exp(−Dt)) + ν exp(−Dt)
−χ((χ+ n(0))(1− exp(−Dt)) + ν exp(−Dt))

(χ+ n(0))(1− exp(−Dt)) + ν exp(−Dt)

=
n(0)(1 + χ exp(−Dt)) + χ(1− exp(−Dt))
n(0)χ(1− exp(−Dt)) + χ+ exp(−Dt) ,

Ni = Nn. (43)

(iii) G.3

Monomolecular equation with time-dependent car-
rying capacity κ and constant rate r (for the nota-
tion, see table 6):

dy
dt

= r(κ(t)− y),

y(t) = y(0) exp(−rt) +
∫ t

0
exp(r(t− t′))κ(t′) dt′.

(iv) G.4

Logistic equation with time-dependent carrying
capacity κ and constant rate r (for the notation, see
table 6):

dy
dt

= ry(κ(t)− y), y(t) =
y(0)F (t)

1 + ry(0)I(t)
,

F (t) = exp
(
r

∫ t

0
κ(t′) dt′

)
, I(t) =

∫ t

0
F (t′) dt′.

Note that various authors including Nisbet & Gur-
ney (1976) and Coleman (1979), and especially Fer-
randino (in Waggoner 1986), considered a related
equation of the form dy/dt = ry(1−y/κ(t)) in which
the carrying capacity κ depends on time.

(v) G.5

Exponential host growth, no inoculum decay, no
secondary infection:

Ni = N(0)
rpP

rn + rpP
exp(rnt)

+
(
Ni(0)−N0

rpP

rn + rpP

)
exp(−rpPt).

(vi) G.6

No host growth, exponential inoculum decay, no
secondary infection:

Ni(t) = N − (N −Ni(0)) exp(rpP0/rd)
× exp(− exp(−rd(t− θ))),

with θ = r−1
d ln(rpP0/rd).

(b) SW model

General types of the solutions summarized in ta-
ble 7 are given below for the SW model. For the
notation, refer to table 7.

(i) SW.1

No host growth, no inoculum decay, no secondary
infection:

du/dt = rpP (1− l), dl/dt = rlu(1− l).
The second equation can be rewritten by change of
variable, v = 1−l, and the result substituted into the
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Table 6. Analytical solutions for the G model (c.c. denotes carrying capacity). The notes (G.1)–(G.6) refer to the text

host growth no secondary infection with secondary infection

no inoculum dynamics

zero monomolecular growth, y = χ+ n with χ = (rpP )/(rsN)
dNi/dt = rpP (N −Ni), transforms the equation into

cf. (G.1) dy/dt = Dy(1− y/ν),
with D = rpP + rsN , ν = 1 + χ, the
solution matches monomolecular when
χ = 0 and logistic when χ→∞; cf. (G.2)

time-dependent, monomolecular equation with y = αP +Ni with α = rp/rs

including limited time-dependent c.c. transforms the equation into
growth dNi/dt = rpP (N(t)−Ni), dy/dt = ry(κ(t)− y),

cf. (G.3) with y = Ni, r = rpP with r = rs and κ(t) = N(t) + αP ,
and κ(t) = N(t) the logistic equation with time

varying c.c., cf. (G.4)

exponential dNi/dt = rpP (N(0) exp(rnt)−Ni), no closed analytical solution
the solution is a difference of
exponentials (G.5)

inoculum decays to 0

zero dNi/dt = rpP (0) exp(−rdt)(N −Ni), y = N −Ni leads to
monomolecular equation with time-varying dy/dt = ry(κ(t)− y),
rate leading to a Gompertz-like with r = −rs, κ(t) = N + αP (t)
solution, (G.6) and α = rp/rs, logistic with

time-dependent c.c., cf. (G.3)

time-dependent change of the independent variable full Riccati equation with time-dependent
from t to P leads to a monomolecular coefficients (no analytical
equation with varying c.c. solutions)

dNi/dP = −rp/rd(N(t(P ))−Ni),
with t(P ) = ln(P/P (0))/rd, cf. (G.4)

first equation after the latter is differentiated with
respect to time. Then

du
dt

= rpPv,
dv
dt

= −rluv,

0 =
d2v

dt2
− rpP

dv
dt

=
d2v

dt2
+ rpPrluv

=
d2v

dt2
+ rlu

du
dt

=
d
dt

(
du
dt

+ 1
2rlu

2
)
.

Thus

du
dt

+ 1
2rlu

2 = K1,

with K1 being an integration constant. This is a
Riccati equation with constant coefficients and one
special solution can be easily found, namely u(t) =√

(2K1/rl) = u∞. The transformation of the depen-
dent variable u into u − u∞ transforms the Riccati
equation into the solvable Bernoulli equation. For the
general properties of Riccati equation see Zwillinger
(1992). Note that K1 > 0 as u > 0, l < 1, and
du/dt > 0. The integration constant K1 can be cal-

culated from l(0):

rpP (1− l(0)) =
du
dt

= K1 − 1
2rlu

2(0),

K1 = rpP (1− l(0)) + 1
2rlu

2(0).

The equation can be solved in order to obtain

u(t) =
√

2K1

rl

× tanh

(√
1
2rlK1t+ 1

2 ln

(√
2K1/rl + u(0)√
2K1/rl − u(0)

))

and

v(t) = 1− l(t) =
K1

rpP

(
1− tanh2

(√
1
2rlK1t

+ 1
2 ln

(√
2K1/rl + u(0)√
2K1/rl − u(0)

.

)))
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Table 7. Analytical solutions for the SW model (i.c. denotes initial conditions). The solution for Li (but not necessarily
l) always displays an inflection point for small u(0) including the case of u(0) = 0. The notes (SW.1)–(SW.3) refer to
the text

host growth no secondary infection with secondary infection

no inoculum dynamics

zero du/dt+ 1
2rlu

2 = K1, dv/dt = −Av√K2 + (D − rsLv)2,
with an integration constant with A =

√
rlL/rs, v = 1− l,

K1 = rpP (1− l(0)), cf. (SW.1) D = rpP + rsL and an integration
constant K2 = rlrsLu

2(0)− (D − rsLv(0)),
cf. (SW.2)

time-dependent no closed analytical solution found

inoculum decays to 0

zero (du/dt) + (1/2rl)(rlu+ rd)2 = K3, no closed analytical solution found
with an integration constant
K3 = rpP (0)(1− l(0)) + 1/(2rl)(rlu(0) + rd)2,
cf. (SW.3)

time-dependent no closed analytical solution found

(ii) SW.2

No host growth, no inoculum decay, with sec-
ondary infection:

du
dt

= (rpP + rsLl)(1− l), dl
dt

= rlu(1− l).

After changing the variable l to v = 1− l, we get

du
dt

= (rpP + rsL− rsLv)v ≡ (D − rsLv)v, (44)

dv
dt

= −rluv, (45)

where D = rpP + rsL. Multiplying equation (44) by
−rlu gives

−rlu
du
dt

= (D − rsLv)(−rluv) = (D − rsLv)
dv
dt
,

d
dt

(1
2rlu

2) =
d
dt

(
(D − rsLv)2

2rsL

)
.

Thus,

rlrsLu
2 = (D − rsLv)2 +K2,

u =

√
K2 + (D − rsLv)2

rlrsL
,

where K2 is again an integration constant, which can
be found from initial conditions

K2 = rlrsLu(0)2 − (D − rsLv(0))2

and only a positive solution for u is valid. Note that
D > 0 and D2 +K2 > 0. Then

dv
dt

= −
√

rl

rsL

√
K2 + (D − rsLv)2 v.

This equation can be easily solved in order to get the
formulae shown in equation (46).

v(t) =
4F (t)(K2 +D2)

F (t)2 + 4DrsLF (t)− 4rsL2K2
,

F (t) ≡ exp

(√
rl(K2 +D2)

rsL
t

)
f(v(0)),

f(v) ≡ 2(K2 +D2)− 2DrsLv

v

+
2
√

(K2 +D2)(K2 + (D − rsLv)2)
v

.

(46)

(iii) SW.3

No host growth, exponential inoculum decay, no
secondary infection:

du
dt

= rpPv,
dv
dt

= −rluv,
dP
dt

= −rdP.

Multiplying the second equation by rpP and expand-
ing,

d(Pv)
dt

=
dP
dt
v + P

dv
dt

= −rdPv + P
dv
dt

= −rd

rp

du
dt

+ P
dv
dt
,

from which we get

d(rpPv)
dt

= −(rlu+ rd)
du
dt

= − 1
2rl

d
dt

(rlu+ rd)2.

Thus,

rpPv +
1

2rl
(rlu+ rd)2 = K3
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or, alternatively,

du
dt

+
1

2rl
(rlu+ rd)2 = K3.

The first of the above formulae can be used to find
the value of the constant K3:

K3 = rpP (0)(1− l(0)) +
1

2rl
(rlu(0) + rd)2.

This is again a Riccati equation and one particular
solution is known, i.e. u(t) = const. = u∞ (cf. above):

u∞ =
1
rl

[
√

2rlK3 − rd].

The equation can be solved in a similar way as for
SW.1.
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